Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Parasit Vectors ; 17(1): 81, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38389080

RESUMEN

BACKGROUND: Timely diagnosis of Toxoplasma gondii infection is necessary to prevent and control toxoplasmosis transmission. The gold immunochromatographic assay (GICA) is a means of rapidly detecting pathogen in samples. GICA-based diagnostic methods have been developed to accurately detect pathogens with high sensitivity and specificity, and their application in T. gondii diagnosis is expected to yield good results. METHODS: Colloidal gold test strips were produced using T. gondii C-terminal truncated apical membrane antigen 1 (AMA1C). Colloidal gold-AMA1C and colloidal gold-murine protein conjugate were synthesized under optimal conditions. A nitrocellulose membrane was treated with AMA1C and goat anti-mouse antibody as the test line and control line, respectively. In total, 90 cat serum samples were tested using AMA1C-GICA and a commercial enzyme linked immunosorbent assay (ELISA) kit. The GICA results were digitally displayed using a portable colloidal gold immunochromatographic test strip analyzer (HMREADER). The sensitivity, specificity, and stability of AMA1C-GICA were assessed, and this was then used to examine clinical samples, including 203 human sera, 266 cat sera, and 81 dog sera. RESULTS: AMA1C-GICA had a detection threshold of 1:32 for T. gondii-positive serum. The GICA strips specifically detected T. gondii antibodies and exhibited no reactivity with Plasmodium vivax, Paragonimus kellicotti, Schistosoma japonicum, Clonorchis sinensis, and Schistosoma mansoni. Consequently, 15 (16.7%) positive samples were detected using the AMA1C-GICA and commercial ELISA kits for each of the assays. The receiver-operating characteristic curve showed that GICA had a relative sensitivity of 85.3% and specificity of 92%, with an area under the curve of 98%. After analyzing clinical samples using HMREADER, 1.2%-23.4% of these samples were found to be positive for T. gondii. CONCLUSIONS: This study presents a novel assay that enables timely and efficient detection of serum antibodies against T. gondii, thereby allowing for its early clinical diagnosis. Furthermore, the integration of digital detection using HMREADER can enhance the implementation of GICA.


Asunto(s)
Toxoplasma , Toxoplasmosis , Ratones , Animales , Perros , Humanos , Cromatografía de Afinidad/métodos , Sensibilidad y Especificidad , Inmunoensayo/métodos , Toxoplasmosis/diagnóstico , Ensayo de Inmunoadsorción Enzimática/métodos , Anticuerpos Antihelmínticos , Oro Coloide/análisis , Oro Coloide/química
2.
J Am Chem Soc ; 146(1): 961-969, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38157246

RESUMEN

Hot carriers rapidly lose kinetic energies on a subpicosecond time scale, posing significant limitations on semiconductors' photon-conversion efficiencies. To slow the hot carrier cooling, the phonon bottleneck effect is constructed prevalently in quantum-confined structures with discrete energy levels. However, the maximum energy separation (ΔEES) between the energy levels is in a range of several hundred meV, leading to unsatisfactory cooling time. To address this, we design a novel organic semiconductor capable of forming intermolecular charge transfer (CT) in J-aggregates, where the lowest singlet excited state (S1) splits into two states due to the significant interplay between the Coulomb interaction and intermolecular CT coupling. The ΔEES between the two states can be adjusted up to 1.02 eV, and an extremely slow carrier cooling process of ∼72.3 ps was observed by femtosecond transient absorption spectroscopy. Moreover, the phonon bottleneck effect was identified in organic materials for the first time, and CT-mediated J-aggregation with short-range interactions was found to be the key to achieving large ΔEES. The significantly prolonged carrier cooling time, compared to <100 fs in the isolated molecule (10-6 M), highlights the potential of organic molecules with diversified aggregation structures in achieving long-lived hot carriers. These findings provide valuable insights into the intrinsic photophysics of electron-phonon scattering in organic semiconductors.

3.
Angew Chem Int Ed Engl ; 62(33): e202305817, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37345904

RESUMEN

Photocatalytic water splitting is a promising approach to generating sustainable hydrogen. However, the transport of photoelectrons to the catalyst sites, usually within ps-to-ns timescales, is much faster than proton delivery (∼µs), which limits the activity. Therefore, the acceleration of abstraction of protons from water molecules towards the catalytic sites to keep up with the electron transfer rate can significantly promote hydrogen production. The photobasic effect that is the increase in proton affinity upon excitation offers means to achieve this objective. Herein, we design photobasic carbon dots and identify that internal pyridinic N sites are intrinsically photobasic. This is supported by steady-state and ultrafast spectroscopic measurements that demonstrate proton abstraction within a few picoseconds of excitation. Furthermore, we show that in water, they form a unique four-level lasing scheme with optical gain and stimulated emission. The latter competes with photocatalysis, revealing a rather unique mechanism for efficiency loss, such that the stimulated emission can act as a toggle for photocatalytic activity. This provides additional means of controlling the photocatalytic process and helps the rational design of photocatalytic materials.

4.
In Vitro Cell Dev Biol Anim ; 59(4): 241-255, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37099179

RESUMEN

Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9 and cytosine base editing (CBE) technologies, adenine base editing (ABE) shows better safety and accuracy in gene modification. However, because of the characteristics of gene sequences, the ABE system cannot be widely used in gene knockout. Alternative splicing of mRNA is an important biological mechanism in eukaryotes for the formation of proteins with different functional activities. The splicing apparatus recognizes conserved sequences of the 5' end splice donor and 3' end splice acceptor motifs of introns in pre-mRNA that can trigger exon skipping, leading to the production of new functional proteins, or causing gene inactivation through frameshift mutations. This study aimed to construct a MSTN knockout pig by inducing exon skipping with the aid of the ABE system to expand the application of the ABE system for the preparation of knockout pigs. In this study, first, we constructed ABEmaxAW and ABE8eV106W plasmid vectors and found that their editing efficiencies at the targets were at least sixfold and even 260-fold higher than that of ABEmaxAW by contrasting the editing efficiencies at the gene targets of endogenous CD163, IGF2, and MSTN in pigs. Subsequently, we used the ABE8eV106W system to realize adenine base (the base of the antisense strand is thymine) editing of the conserved splice donor sequence (5'-GT) of intron 2 of the porcine MSTN gene. A porcine single-cell clone carrying a homozygous mutation (5'-GC) in the conserved sequence (5'-GT) of the intron 2 splice donor of the MSTN gene was successfully generated after drug selection. Unfortunately, the MSTN gene was not expressed and, therefore, could not be characterized at this level. No detectable genomic off-target edits were identified by Sanger sequencing. In this study, we verified that the ABE8eV106W vector had higher editing efficiency and could expand the editing scope of ABE. Additionally, we successfully achieved the precise modification of the alternative splice acceptor of intron 2 of the porcine MSTN gene, which may provide a new strategy for gene knockout in pigs.


Asunto(s)
Adenina , Edición Génica , Animales , Porcinos , Exones/genética , Mutación , Técnicas de Inactivación de Genes
5.
Nanoscale ; 15(7): 3337-3344, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36722749

RESUMEN

Carbon dots (CDs) with deep-blue thermally activated delayed fluorescence (TADF) of more than 2 s were developed, exhibiting the longest lifetime to date. In contrast to the established deep-blue TADF systems, this developed CD-based system (BNCDs) could be facilely and effectively synthesized, and more impressively, the emission lasted for more than 16 s (to the naked eye). XRD, TEM, FT-IR, and XPS analyses were conducted, and structural characterizations indicated that the CDs formed hydrogen bonding with B2O3. The temperature-dependent photoluminescence (PL) spectra demonstrated the existence of thermally activated delayed fluorescence in the composite. Further studies revealed that the B2O3 matrix restricted the vibration and rotation of CD chromophores and suppressed the non-radiative recombination of triplet excitons. Last but not least, potential applications in bioimaging, anti-counterfeiting, and information encryption were also explored. This work can provide new insights for developing metal-free and ultralong lifetime afterglow materials.

6.
ACS Appl Mater Interfaces ; 14(1): 1609-1614, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34962384

RESUMEN

Electronic transport through molecular-scale devices has been studied extensively for its extraordinary dimension superiority. Assembling such devices into large-scale functional circuits is crucial since the molecular tunnel junctions must be reliable, stable and reproducible during technological applications. In ideal circumstances, the device architecture should be designed such that the metal-molecule-metal (MMM) junctions can be analyzed by the more sensitive four point probe system. In this paper, we expound a delicate method to manufacture molecular junctions, which show excellent stability and reproducibility with high yields (>91 per cent). We form self-assembled monolayers (SAMs) on conductive Au thin film by microcontact printing and then generate robust covalently bound metal thin film electrodes on top of the SAMs by selective electroless deposition. Following MMM junction formation, a photoresist is coated and wells are opened on each feature by lithography. Then, Au thin film, as a permanent top electrode, is deposited into the photolithographically defined well. Conductivity analyzations were carried out on the 50 µm square junctions by the four point probe measurement, and the results showed reproducible tunneling I-V characteristics. This method reveals an approach not only offering a unique vehicle to investigate the electrical properties of molecule ensembles in MMMs, but also making a significant step toward MMM applications at the device level.

7.
Nat Commun ; 11(1): 5179, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33056986

RESUMEN

Carbon dots (CDs) are a promising nanomaterial for photocatalytic applications. However, the mechanism of the photocatalytic processes remains the subject of a debate due to the complex internal structure of the CDs, comprising crystalline and molecular units embedded in an amorphous matrix, rendering the analysis of the charge and energy transfer pathways between the constituent parts very challenging. Here we propose that the photobasic effect, that is the abstraction of a proton from water upon excitation by light, facilitates the photoexcited electron transfer to the proton. We show that the controlled inclusion in CDs of a model photobase, acridine, resembling the molecular moieties found in photocatalytically active CDs, strongly increases hydrogen generation. Ultrafast spectroscopy measurements reveal proton transfer within 30 ps of the excitation. This way, we use a model system to show that the photobasic effect may be contributing to the photocatalytic H2 generation of carbon nanomaterials and suggest that it may be tuned to achieve further improvements. The study demonstrates the critical role of the understanding the dynamics of the CDs in the design of next generation photocatalysts.

8.
J Hazard Mater ; 341: 102-111, 2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28772249

RESUMEN

In this work, well-aligned ZnO nanorods were grown on the substrate of exfoliated g-C3N4 nanosheets via a microwave-assisted hydrothermal synthesis, and then Pt/ZnO/g-C3N4 nanostructures were obtained after the deposition of Pt nanoparticles. The growth of vertically ordered ZnO nanorods was occurred on g-C3N4 nanosheets through the bonding interaction between Zn and N atoms, which was confirmed by XPS, FT-IR data and molecular orbital theory. The Pt/ZnO/g-C3N4 nanostructures sensor exhibited the remarkable sensitivity, selectivity, and fast response/recovery time for air pollutants of ethanol and NO2. The application of Pt/ZnO/g-C3N4 nanostructures could be used as a dual-functional gas sensor through the controlled working temperature. Besides, the Pt/ZnO/g-C3N4 nanostructures sensor could be applied to the repeating detection of ethanol and NO2 in the natural environment. The synergistic effect and improved the separation of electron-hole pairs in Pt/ZnO/g-C3N4 nanostructures had been verified for the gas sensing mechanism. Additionally, Pt/ZnO/g-C3N4 nanostructures revealed the excellent charge carriers transport properties in electrochemical impedance spectroscopy (EIS), such as the longer electron lifetime (τn), higher electron diffusion coefficient (Dn) and bigger effective diffusion length (Ln), which also played an important role for Pt/ZnO/g-C3N4 nanostructures with striking gas sensing activities.

9.
ChemSusChem ; 11(4): 700-708, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29285895

RESUMEN

As an amorphous or semicrystalline material, graphitic carbon nitride (g-C3 N4 ) displays poor photocatalytic activity owing to rapid recombination of the photogenerated charge carriers, which is mainly caused by a high density of defects in the graphitic structure. In this work, a porous O-doped g-C3 N4 (P-CNO) nanosheet with a highly ordered architecture is fabricated by introducing a novel hydrothermal treatment to the precursor before the final thermal condensation. The photocatalytic hydrogen evolution rate (HER) and HER per surface area of P-CNO are 13.9 and 1.7 times higher than that of bulk g-C3 N4 . The improved photocatalytic activity is ascribed to a synergistic effect of O doping, a porous sheet-like morphology, and increased crystallinity. This work also provides a new approach for the synthesis of other polymer-based photocatalysts with high crystallinity and excellent performance.


Asunto(s)
Grafito/química , Nitrilos/química , Oxígeno/química , Procesos Fotoquímicos , Catálisis , Cristalización , Calor , Nanoestructuras
10.
Opt Express ; 24(6): 6656-64, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-27136854

RESUMEN

We propose a single layer all-dielectric metasurface lens to simultaneously convert and focus an incident linear polarization into a radial beam with high efficiency and high numerical aperture (NA). It shows a better focusing property compared with the linearly polarized metasurface lens for high NA. A tight spot size (0.502λ) is achieved for the NA = 0.94. Additionally, the emergent polarization can in principle be switched flexibly between radially and azimuthally polarized beams by the adjustment of incident polarization direction. It is expected that our scheme may have potential value in microscopy, material processing, medicine, particles accelerating and trapping, and so on.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...